Skip to main content
Log in

Biology, ecology and management ofElaeagnus angustifolia L. (Russian olive) in western North America

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Elaeagnus angustifolia (Russian olive) is an alien tree that is increasingly common in riparian habitats of western North America. This paper reviews the pertinent scientific literature in order to determine the status ofE. angustifolia as a riparian invader and to suggest ecological reasons for its success.Elaeagnus angustifolia meets the biogeographic, spread, and impact criteria for invasive species. Ecological characteristics likely enabling its invasiveness include adaptation to the physical environmental conditions that characterize semi-arid riparian habitats, lack of intense pressure from herbivores, and tolerance of the competitive effects of established vegetation. We believe that the success of this species is at least partly due to its ability to take advantage of the reduced levels of physical disturbance that characterize riparian habitats downstream from dams. Control ofE. angustifolia is likely to be most promising where natural river flow regimes remain relatively intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abrahamson, L. P. 1986. Forest tree nursery herbicide studies in the Northern Great Plains: herbicide phytotoxicity tables. p. 58–67.In Proceedings: Intermountain Nurseryman's Association Meeting, 1985, Ft. Collins, CO, USA. USDA Forest Service General Technical Report RM-125.

  • Akashi, Y. 1988. Riparian vegetation dynamics along the Bighorn River, Wyoming. Ph. D. Dissertation. University of Wyoming, Laramie, WY, USA.

    Google Scholar 

  • Albertson, F. W. and J. E. Weaver. 1945. Injury and death or recovery of trees in prairie climate, Ecological Monographs 15:304–433.

    Article  Google Scholar 

  • anonymous. 1987.Phomopsis canker and dieback of Russian olive. University of Illinois Extension, Department of Crop Sciences, Champaign, Illinois, USA. Report on Plant Disease No. 606.

  • Armstrong, D. P. and M. Westoby. 1993. Seedlings from large seeds tolerate defoliation better: a test using phylogenetically independent contrasts. Ecology 74:1092–1100.

    Article  Google Scholar 

  • Arnold, R. H. and J. C. Carter. 1974.Fusicoccum elaeagni, the cause of a canker and dieback of Russian olive, redescribed and redisposed to the genusPhomopsis. Mycologia 66:191–197.

    Article  Google Scholar 

  • Auble, G. T. and M. L. Scott. 1998. Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands 18:546–556.

    Google Scholar 

  • Baker, H. G. 1965. Characteristics and modes of origin of weeds. p. 147–168.In H. G. Baker and G. L. Stebbins (eds.) The Genetics of Colonizing Species. Academic Press, New York, NY, USA.

    Google Scholar 

  • Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 523:997–1010.

    Article  Google Scholar 

  • Bakhiev, A. B. and S. E. Treshkin. 1994. Dynamics of productivity of floodplain communities in the Amu Darya delta in conditions of the territory's varying hydrological regime. Russian Journal of Ecology 25:322–325.

    Google Scholar 

  • Belcher, E. W. and R. P. Karrfalt. 1979. Improved methods for testing the viability of Russian olive seed. Journal of Seed Technology 4:57–64.

    Google Scholar 

  • Bermudez de Castro, F., Y. Aranda, and M. F. Schmitz. 1990. Acetylene-reducing activity and nitrogen inputs in a bluff ofElaeagnus angustifolia L. Orsis 5:85–89.

    Google Scholar 

  • Bertrand, L. J. and M. Lalonde. 1985.In vitro propagation and nodulation byFrankia of actinorhizal Russian olive (Elaeagnus agustifolia L.). Plant and Soil 87:143–152.

    Article  Google Scholar 

  • Bingelli, P. 1996. A taxonomic, biogeographical and ecological overview of invasive woody plants. Journal of vegetation Science 7:121–124.

    Article  Google Scholar 

  • Borell, A. F. 1962. Russia-olive for wildlife and other conservation uses. U.S. Department of Agriculture, Washington, DC, USA. Leaflet No. 517.

    Google Scholar 

  • Bovey, R. W. 1965. Control of Russian olive by aerial applications of herbicides. Journal of Range Management 18:194–195.

    Article  CAS  Google Scholar 

  • Braatne, J. H., S. B. Rood, and P. E. Heilman. 1996. Life history, ecology, and conservation of riparian conttonwoods in North America. p. 57–85.In R. F. Stettler, H. D. H. D. Bradshaw Jr., P. E. Heilman, and T. M. Hinckely (eds.). Biology ofPopulus and Its Implications for Management and Conservation. NRC Research Press, Ottawa, ON, Canada.

    Google Scholar 

  • Bradley, C. E. and D. G. Smith. 1986. Plains cottonwood recruitment and survival on a prairie meandering river floodplain, Milk River, southern Alberta and northern Montana. Canadian Journal of Botany 64:1433–1442.

    Article  Google Scholar 

  • Brock, J. H. 1994.Tamarix spp. (salt cedar), an invasive exotic woody plant in arid and semi-arid riparian habitats of western U.S.A. p. 27–44.In L. C. de Waal, L. E. Child, P. M. Wade, and J. H. Brock (eds.) Ecology and Management of Invasive Riverside Plants. Wiley, New York, NY, USA.

    Google Scholar 

  • Brock, J. H. 1998. Invasion, ecology and management ofElaeagnus angustifolia (Russian olive) in the southwestern U.S.A. p. 372.In U. Starfinger, K. Edwards, I. Kowarik, and M. Williamson (eds.) Plant Invasions: Ecological Mechanisms and Human Responses. Backhuys Pubishers, Leiden, The Netherlands.

    Google Scholar 

  • Brown, C. R. 1990. Avian use of native and exotic riparian habitats on the Snake River, Idaho. MA Thesis. Colorado State University, Ft. Collins, CO, USA.

    Google Scholar 

  • Campbell, C. J. and W. A. Dick-Peddie. 1964. Comparison of phreatophyte communities on the Rio Grande in New Mexico. Ecology 45:492–502.

    Article  Google Scholar 

  • Caplan, T. 2002. Controlling Russian Olives within cottonwood gallery forests along the Middle Rio Grande floodplain (New Mexico). Ecological Restoration 20:138–139.

    Google Scholar 

  • Carman. J. G. and J. D. Brotherson. 1982. Comparisons of sites infested and not infested with saltcedar (Tamarix pentandra) and Russian olive (Elaeagnus angustifolia). Weed Science 30:360–364.

    Google Scholar 

  • Carmean, W. H. 1976. Soil conditions affect growth of hardwoods in shelterbelts. USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN, USA. Research Note NC-204.

    Google Scholar 

  • Chong, C., O. Allen, and H. W. Barnes. 1992. Comparative rooting of stem cuttings of selected woody landscape shurb and tree taxa to varying concentrations of IBA in talc, ethanol, and glycol carriers. Journal of Environmental Horticulture 10:245–250.

    CAS  Google Scholar 

  • Christensen, E. M. 1963. Naturalization of Russian olive (Elaeagnus angustifolia L.) in Utah. American Midland Naturalist 70:133–137.

    Article  Google Scholar 

  • Côté, B., R. M. Carlson, and J. O. Dawson. 1988. Leaf phtosynthetic characteristics of seedlings of actinorhizalAlnus spp. andElaeagnus spp. Photosynthesis Research 16:211–218.

    Article  Google Scholar 

  • Crawley, M. J., P. H. Harvey, and A. Purvis. 1997. Comparative ecology of the native and alien flora of the British Isles. p. 36–53.In I. Silvertown, M. Franco, and J. L. Harper (eds.) Plant Life Histories: ecology, phylogeny, and evolution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Currier, P. J. 1982. The floodplain vegetation of the Platte River: phytosociology, forest development, and seedling establishment. Ph.D. Dissertation. Iowa State University, Ames, IA, USA.

    Google Scholar 

  • Daehler, C. C. 2001. Two ways to be an invader, but one is more suitable for ecology. Bulletin of the Ecological Society of America 82:101–102.

    Google Scholar 

  • D'Antonio, C. M., T. L. Dudley, and M. Mack. 199. Disturbance and biological invasions: direct effects and feedbacks. p. 413–452.In L. R. Walker (ed.) Ecosystems of Disturbed Ground. Elsevier, New York, NY, USA.

    Google Scholar 

  • D'Antonio, C. M. and P. M. Vitousek. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87.

    Google Scholar 

  • Davis, M. A. and K. Thompson. 2000. Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bulletin of the Ecological Society of America: 226–230.

  • Davis, M. A. and K. Thompson. 2001. “Newcomers” invade the field of invasion ecology: question field's future. Bulletin of the Ecological Society of America. 83:196–197.

    Google Scholar 

  • Dawson, J. O. and J. W. V. Sambeek. 1993. Interplanting woody nurse crops promotes differential growth of black walnut saplings. p. 455–464.In 9th Central Hardwood Forest Conference, West Lafayette, IN, USA.

  • DeFarrari, C. M. and R. J. Naiman. 1994. A multi-scale assessment of the occurrence of exotic plants in the Olympic Peninsula, Washington. Journal of Vegetation Science 5:247–258.

    Article  Google Scholar 

  • Deters, M. E. and H. Schmitz. 1936. Drouth damage to prairie shelterbelts in Minnesota. University of Minnesota Agricultural Experiment Station, St. Paul. MN, USA. Bulletin 329.

    Google Scholar 

  • Dieter, L. 1996.Elaeagnus angustifolia. p.53.In J. M. Randall and J. Marinelli (eds.) Invasive Plants: Weeds of the Global Garden. Brooklyn Botanic Garden, Brooklyn, NY, USA.

    Google Scholar 

  • Domenach, A.-M, A. Morourd, and L. Jocteur-Monrozier. 1994. Leaf carbon and nitrogen consituents of some actinorhizal tree species. Soil Biology and Biochemistry 5:649–653.

    Article  Google Scholar 

  • Ebinger, J. and L. Lehnen. 1981. Naturalized autumn olive in Illinois. Transactions of the Illinois State Academy of Science 74: 83–85.

    Google Scholar 

  • Economous, A. S. and E. M. Maloupa. 1995. Regeneration ofElaeagnus angustifolia from leaf segments of in vitro-derived shoots. Plant Cell, Tissue, and Organ Culture 40:285–288.

    Article  Google Scholar 

  • Edelen, W. J. and W. A. Crowder. 1997. Russian olive (Elaeagnus angustifolia) control experiment underway (Washington). Restoration and Management Notes 15:198–199.

    Google Scholar 

  • Everitt, B. L. 1998. Chronology of the spread of tamarisk in the central Rio Grande. Wetlands 18:658–668.

    Google Scholar 

  • Ewel, J. H., D. J. Dowd, J. Bergelson, C. D. Daehler, C. M. D'Antonio, L. D. Gomez, D. R. Gordon, R. J. Hobbs, A. Holt, K. R. Hopper, C. E. Hughes, M. LaHart, R. R. B. Leakey, W. G. Lee, L. L. Loope, D. H. Lorence, and P. M. Vitousek. 1999. Deliberate introductions of species: research needs. BioScience 49:619–630.

    Article  Google Scholar 

  • Foster, S. A. 1986. On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. The Botanical Review 52:260–299.

    Article  Google Scholar 

  • Fox, M. D. and B. J. Fox. 1986. The susceptibility of natural communities to invasion. p. 57–66.In The Ecology of Biological Invasions: an Australian perspective. Australian Academy of Science, Camberra, Australia.

    Google Scholar 

  • Freehling, M. D. 1982. Riparian woodlands of the Middle Rio Grande Valley, New Mexico: a study of bird populations and vegetation with special reference to Russian-olive (Elaeagnus angustifolia). U.S. Fish and Wildlife Service, Albuquerque, NM, USA.

    Google Scholar 

  • Friedman, J.M., M. L. Scott, and G. T. Auble. 1997. Water management and cottonwood forest dynamics along prairie streams. p. 49–71.In F. L. Knopf and F. B. Samson (eds.) Ecology and Conservation of Great Plains Vertebrates. Spinger-Verlag, New York, NY, USA.

    Google Scholar 

  • Friedman, J. M., M. L. Scott, and J. William, M. Lewis. 1995. Restoration of riparian forest using irrigation, artificial disturbance, and natural seedfall. Environmental Management 19:547–557.

    Article  Google Scholar 

  • Gazda, R. J., R. R. Meidinger, I. J. Ball, and J. W. Connelly. 2002. Relationships between Russian olive and duck nest success in southeastern Idaho. Wildlife Society of America Bulletin 30:337–344.

    Google Scholar 

  • Glenn, E., R. Tanner, S. Mendez, T. Kehret, D. Moore, J. Garcia, and C. Valdes. 1998. Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River, Mexico. Journal of Arid Environments 40: 281–294.

    Article  Google Scholar 

  • Graf, W. L. 1999. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35:1305–1311.

    Article  Google Scholar 

  • Great Plains Flora Association. 1977. Atlas of the Flora of the Great Plains. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Great Plains Flora Association. 1986. Flora of the Great Plains. University Press of Kansas, Lawrence, KS, USA.

    Google Scholar 

  • Grime, J. P. and D. W. Jeffrey. 1965. Seedling establishment in vertical gradients of sunlight. Journal of Ecology 53:621–634.

    Article  Google Scholar 

  • Haber, E. 1999. Invasive Exotic Plants of Canada Fact Sheet No. 14; Russian-olive. National Botanical Services, Ottawa, ON, Canada.

    Google Scholar 

  • Hamilton, D. F. and P. L. Carpenter. 1976. Regulation of seed dormancy inElaeagnus angustifolia by endogenous growth substances. Canadian Journal of Botany 54:1068–1073.

    Article  CAS  Google Scholar 

  • Hansen, N. E. 1901. Ornamentals for South Dakota. U. S. Experiment Station, Brookings, SD, USA. Bulletin 72.

    Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. Academic Press, New York, NY, USA.

    Google Scholar 

  • Hayes, B. 1976. Planting theElaeagnus Russian and autumn olive for enctar. American Bee Journal 116:74,82.

    Google Scholar 

  • Heit, C. E. 1967. Propagation from seed. Part 6: hardseededness—a critical factor. American Nurseman 125:10–12, 88–96.

    Google Scholar 

  • Heywood, V. H. (ed) 1993. Flowering Plants of the World. Oxford University Press. New York, NY, USA.

    Google Scholar 

  • Hobbs, R. J. and L. F. Huenneke. 1992. Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6: 324–337.

    Article  Google Scholar 

  • Hogue, E. J. and L. J. LaCroix. 1970. Seed dormancy of Russian olive (Elaeagnus angustifolia L.). Journal of the American Society of Horticultura Science 95:449–452.

    Google Scholar 

  • Howe, W. H. and F. L. Knopf. 1991. On the imminent decline of Rio Grande cottonwoods in central New Mexico. The Southwestern Naturalist 36:218–224.

    Article  Google Scholar 

  • Iriondo, J. M., M. da la Iglesia, and C. Perez. 1995. Micropropagation ofElaeagnus angustifolia from mature trees. Tree Physiology 15:691–693.

    PubMed  Google Scholar 

  • Jackson, J., J. T. Ball, and M. R. Rose. 1990. Assessment of the salinity tolerance of eight Sonoran desert riparian trees and shrubs. Biological Sciences, Center, Desert Research Institute, University of Nevada System. Reno, NV, USA. Final Report, Contract No. 9-Cp-30-07170.

    Google Scholar 

  • Johnson, G. V. 1995. Nitrogen fixation by Russian olive (Elaeagnus angustifolia): field and laboratory studies (abstract).In 10th International Conference onFrankia and Actinhorizal Plants. Davis, CA, USA.

  • Johnson, W. C. 1992. Dams and riparian forests: case study from the upper Missouri river. Rivers 3:229–242.

    Google Scholar 

  • Johnson, W. C., M. D. Dixon, R. Simons, S. Jenson, and K. Larson. 1995. Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho. Geomorphology 13:159–173.

    Article  Google Scholar 

  • Katz, G. L. 2001. Fluvial disturbance, flood control, and biological invasion in Great Plains riparian forests. Ph.D. Dissertation. University of Colorado, Boulder, CO, USA.

    Google Scholar 

  • Katz, G. L., J. M. Friedman, and S. W. Beatty. 2001. Effects of physical disturbance and granivory on establishment native and alien riparian trees in Colorado, U.S.A. Diversity and Distributions 7:1–14.

    Article  Google Scholar 

  • Kefu, Z. and P. J. C. Harris. 1992. Effect of salt stress on nodulation and nitrogenase activity inElaeagnus angustifolia. Nitrogen Fixing Tree Research Reports 10:165–166.

    Google Scholar 

  • Kindschy, R. R. 1998. European starlings disseminate viable Russian-olive seeds. Northwestern Naturalist 79:119–120.

    Article  Google Scholar 

  • Klich, M. G. 2000. Leaf variations inElaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany 44:171–183.

    Article  PubMed  Google Scholar 

  • Knopf, F. L. and T. T. Olson. 1984. Naturalization of Russian-olive: implications to Rocky Mountain wildlife. Wildlife Society Bulletin 12:289–298.

    Google Scholar 

  • Krupinsky, J. M. and J. A. Walla. 1986.Tubercularia canker of Siberian elm and Russian-olive. p. 40–41.In J. W. Riffle and G. W. Peterson (eds.) Diseases of Trees in the Great Plains. USDA Forest Service General Technical Report RM-129.

  • Lavorel, S., A.-H. Prieur-Richard, and K. Grigulis. 1999. Invasibility and diversity of plant communities: from patterns to processes. Diversity and Distributions 5:41–49.

    Article  Google Scholar 

  • Leishman, M. R. and M. Westoby. 1994. The role of seed size in seedling establishment in dry soil conditions—experimental evidence from semi-arid species. Journal of Ecology 82:249–258.

    Article  Google Scholar 

  • Lesica, P. and S. Miles. 1999. Russian olive invasion into cotton-wood forests along a regulated river in north-central Montana. Canadian Journal of Botany 77:1077–1083.

    Article  Google Scholar 

  • Lesica, P. and S. Miles. 2001. Natural history and invasion of Russian olive along eastern Montana rivers. Western North American Naturalist 61:1–10.

    Google Scholar 

  • Little, E. L. 1961. Sixty trees from foreign lands. U. S. Department of Agriculture, Washington, DC, USA. Agriculture Handbook No. 212.

    Google Scholar 

  • Llinares, F., D. Muñoz-Mingarro, N. Acero, and A. Probanza. 1992. Temporal variation of the total nitrogen concentration in aereal organs of nitrogen fixing and non-fixing riparian species. Orsis 7:125–130.

    Google Scholar 

  • Llinares, F., D. Muñoz-Mingarro, J. M. Pozuelo, B. Ramos, and F. Bermúdez de Castro. 1994. Microbial inhibition and nitrification potential in soils incubated withElaeagnus angustifolia L. leaf litter. Geomicrobiology Journal 11:149–156.

    Article  Google Scholar 

  • Lonsdale, W. M. 1999. Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536.

    Article  Google Scholar 

  • Lorenzini, G., G. Vannacci, and E. Triolo. 1984. Etiology and epidemiological observations ofElaeagnus leaf spot caused bySeptoria eleagni. Phytopathologische Zeitschrift. 110:134–142.

    Article  Google Scholar 

  • Mack, M. C. and C. M. D'Antonio. 1998. Impacts of biological invasions on disturbance regimes. Trends in Ecology and Evolution 13:195–198.

    Article  Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Mack, R. N. and J. N. Thompson. 1982. Evolution in steppe with few large hooved mammals. The American Midland Naturalist 119:757–773.

    Google Scholar 

  • McIntyre, S. and S. Lavorel. 1994. Predicting richness of native, rare, and exotic plants in response to habitat and disturbance variables across a variegated landscape. Conservation Biology 8:521–531.

    Article  Google Scholar 

  • Miller, I. M. and D. D. Baker 1985. The initiation, development and structure of root nodules inElaeagnus angustfolia L. (Elaeagnaceae). Protoplasma 128:107–119.

    Article  Google Scholar 

  • Molles Jr., M. C., C. S. Crawford, L. M. Ellis, H. M. Valett, and C. N. Dahm. 1998. Managed flooding for riparian ecosystem restoration. BioScience 48:749–756.

    Article  Google Scholar 

  • Monk, R. W. and H. H. Wiebe. 1961. Salt tolerance and protoplasmic salt hardiness of various woody and herbaceous ornamental plants. Plant Physiology 36:478–482.

    Article  CAS  PubMed  Google Scholar 

  • Morehart, A. L., R. B. Carroll, and M. Stuart. 1980.Phomopsis canker and dieback ofElaeagnus angustifolia. Plant Disease 64: 66–69.

    Google Scholar 

  • Moretti, A. 1993. Actinorhizal symbioses. Gionale Botanico Italiano 127:434–443.

    Google Scholar 

  • Morton, H. L. and J. M. Krupinsky. 1986.Phomopsis canker of Russian-olive. p. 44–45.In J. W. Riffle and G. W. Peterson (eds.) Diseases of Trees in the Great Plains. USDA Forest Service General Technical Report RM-129.

  • Ohlenbusch, P. D. and P. M. Ritty. 1978. Russian olive control—a preliminary look. p. 132In North Central Weed Control Conference. Des Moines, IA, USA.

  • Olson, T. E. and F. L. Knopf. 1986a. Agency subsidization of a rapidly spreading exotic. Wildlife Society Bulletin: 492–493.

  • Olson, T. E. and F. L. Knopf. 1986b. Naturalization of Russian-olive in the western United States. Western Journal of Applied Forestry 1:65–69.

    Google Scholar 

  • Patten, D. T., D. A. Harpman, M. I. Voita, and T. J. Randle. 2001. A managed flood on the Colorado River: background, objectives, design, and implementation. Ecological Applications 11:635–643.

    Article  Google Scholar 

  • Pearce, C. M. and D. G. Smith. 2001. Plains cottonwood's last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain? Environmental Management 28:623–637.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, G. W. and H. L. Morton. 1986.Botryodiplodia disease of Russian-olive. p. 42–43.In J. W. Riffle and G. W. Peterson (eds.) Diseases of Trees in the Great Plains. USDA Forest Service General Technical Report RM-129.

  • Petrov, A. V. and E. P. Kuz'michev. 1994. Drying-up of Russian olive on the west coast of the Caspian under the influence of Yaroshevskii's engraver and pathogenic microflora. Russian Forest Sciences 3:40–44.

    Google Scholar 

  • Porterfield, J. D., J. D. Odell, and G. R. Huffman. 1993. Effects of a DCPA/Napropamide herbice tank mix on germinants of seven hardwood species in nursery beds. Tree Planter's Notes: 149–153.

  • Pottorff, L. P. and W. R. Jacobi. 1998. Russian-olive decline and gummosis. Colorado State University Cooperative Extension, Ft. Collins, CO, USA. Fact Sheet no. 2.942.

    Google Scholar 

  • Prieur-Richard, A.-H. and S. Lavorel. 2000. Invasions: perspective of diverse plant communities. Austral Ecology 25:1–7.

    Google Scholar 

  • Read, R. A. 1958. The Great Plains shelterbelt in 1954. Great Plains Agricultural Council. University of Nebraska Experiment Station, Lincoln, NE, USA. Publication No. 16.

    Google Scholar 

  • Reader, R. J. 1993. Control of seedling emergence by ground cover and seed predation in relation to seed size for some old-field species. Journal of Ecology 81:169–175.

    Article  Google Scholar 

  • Redmann, R. E., J. Haraldson, and L. V. Gusta. 1986. Leakage of UV-absorbing substances as a measure of salt injusry in leaf tissue of woody species. Physiologia Plantarum 67:87–91.

    Article  CAS  Google Scholar 

  • Rees, M. 1997. Evolutionary ecology of seed dormancy and seed size. p. 121–142.In J. Silvertown, M. Franco, and J. L. Harper (eds.) Plant Life Histories. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Reichard, S. H. and P. White. 2001. Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51: 103–112.

    Article  Google Scholar 

  • Rejmánek, M. and D. M. Richardson. 1996. What attributes make some plant species more invasive? Ecology 77:1655–1661.

    Article  Google Scholar 

  • Rhoades, A. F. and T. A. Block. 2000. The Plants of Pennsylvania. University of Pennsylvania Press, Philadelphia, PA, USA.

    Google Scholar 

  • richardson, D. M., P. Pysek, M. Rejmánek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6:93–107.

    Article  Google Scholar 

  • Richter, B. D. and H. E. Richter. 2000. Precribing flood regimes to sustain riparian ecosystems along meandering rivers. Conservation Biology 14:1467–1478.

    Article  Google Scholar 

  • Riffle, J. W. 1977. First report of vesicular-arbuscular mycorrhizae onElaeagnus angustifolia. Mycologia 69:1200–1203.

    Article  Google Scholar 

  • Robinson, T. W. 1965. Introduction, spread and areal extent of saltcedar (Tamarix) in the western states. U. S. Geological Survey, Washington, DC, USA. Professional Paper 491-A.

    Google Scholar 

  • Rood, S. B., J. M. Mahoney, D. E. Reid, and L. Zilm. 1995. Instream flows and the decline of riparian cottonwoods along the St. Mary River, Alberta. Canadian Journal of Botany 73:1250–1260.

    Article  Google Scholar 

  • Royer, T. V., M. T. Monaghan, and G. W. Minshall. 1999. Processing of native and exotic leaf litter in two Idaho (U.S.A.) streams. Hydrobiologia 400:123–128.

    Article  Google Scholar 

  • Saverimuttu, T. and M. Westoby. 1996. Seedling survival under deep shade in relation to seed size. Journal of Ecology 84:681–689.

    Article  Google Scholar 

  • Seoggan, H. J. 1979. The Flora of Canada, Part 4 Dicotyledoneae (Loasaceae to Compositae). National Museum of Natural Sciences Publications in Botany No. 7(3). National Museums of Canada, Ottawa, ON, Canada.

    Google Scholar 

  • Shafroth, P. B., G. T. Auble, and M. L. Scott. 1995. Germination and establishment of native plains cottonwood (Populus deltoides Marshall subsp.monilifera) and the exotic Russian-olive (Elaeagnus angustifolia). Conservation Biology 9:169–175.

    Article  Google Scholar 

  • Shafroth, P. B., J. M. Friedman, and L. S. Ischinger. 1995. Effects of salinity on establishment ofPopulus fremontii (cottonwood) andTamarix ramosissima (saltcedar) in southwestern United States. Great Basin Naturalist 55:58–65.

    Google Scholar 

  • Singh, M., M. Jain, and R. C. Pant. 1999. Clonal variability in photosynthetic and growth characteristics ofPopulus deltoides under saline irrigation. Photosynthetica 36:605–609.

    Article  Google Scholar 

  • Shishkin, B. K. (ed.). 1949. Flora of the U.S.S.R. Institute of the Academy of Sciences of the U.S.S.R., Moscow, USSR.

  • Simons, S. B. and T. R. Seastedt. 1999. Decomposition and nitrogen release from foliage of cottonwood (Populus deltoides) and Russian-olive (Elaeagnus angustifolia) in a riparian ecosystem. Southwestern Naturalist 44:256–260.

    Google Scholar 

  • Southwood, T. R. E. 1961. The number of species of insects associated with various trees. Journal of Animal Ecology 30:1–8.

    Article  Google Scholar 

  • Sprackling, J. A. and R. A. Read. 1979. Tree root systems in eastern Nebraska. Institute of Agriculture and Natural Resources, Lincoln, NE, USA. Nebraska Conservation Bulletin 37.

    Google Scholar 

  • Stannard, M., D. Ogle, L. Holzworth, J. Scianna, and E. Sunleaf. 2002. History, biology, ecology, suppression and revegetation of Russian-olive sites (Elaeagnus angustifolia L.). USDA-National Resources Conservation Service, Boise, ID, USA. Plant Materials No. 47, Technical Notes.

    Google Scholar 

  • Sternberg, G. 1996.Elaeagnus umbellata. p. 54.In J. M. Randall and J. Marinelli (eds.) Invasive Plants: Weeds of the Global Garden. Brooklyn Botanic Garden, Brooklyn, NY, USA.

    Google Scholar 

  • Steyermark, J. A. 1963. Flora of Missouri. The Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Stoeckeler, J. H. 1946. Alkali tolerance of drought-hardy trees and shrubs in the seed and seedling stage. Minnesota Academy of Science 14:79–83.

    Google Scholar 

  • Stohlgren, T. J., K. A. Bull, Y. Otsuki, C. A. Villa, and M. Lee. 1998. Riparian zones as havens for exotic plant species in the central grasslands. Plant Ecology 138:113–125.

    Article  Google Scholar 

  • Stohlgren, T. T., D. Binkley, G. W. Chong, M. A. Kalkhan, L. D. Schell, K. A. Bull, Y. Otsuki, G. Newman, M. Bashkin, and Y. Son. 1999. Exotic plant species invade hot spots of native plant diversity. Ecological Monographs 69:25–46.

    Article  Google Scholar 

  • Stoleson, S. H. and D. M. Finch. 2001. Breeding bird use of and nesting success in exotic Russian olive in New Mexico. Wilson Bulletin 113:452–455.

    Article  Google Scholar 

  • Stromberg, J. C. 2001. Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments 49:17–34.

    Article  Google Scholar 

  • Stromberg, J. C. and D. T. Patten. 1992. Mortality and age of black cottonwood stands along diverted and undiverted streams in the eastern Sierra Nevada, California. Madrono 39:205–223.

    Google Scholar 

  • Tellman, B. 1997. Exotic pest plant introduction in the American southwest. Desert Plants: 3–10.

  • Tickner, D. P., P. G. Angold, A. M. Gurnell, and J. O. Mountford. 2001. Riparian plant invasions: hydrogeomopholigical control and ecological impacts. Progress in Physical Geography 25:22–52.

    Google Scholar 

  • Tisserat, N. 2002.Phomopsis canker of Russian olive. Kansas State University, Department of Plant Pathology, Manhattan, KS, USA. Extension Plant Pathology Fact Sheet.

    Google Scholar 

  • Tyree, M. T., K. J. Kolb, S. B. Rood, and S. Patino. 1994. Vulnerability to drought-induced cavitation of riparian cottonwoods in Alberta: a possible factor in the decline of an ecosystem? Tree Physiology 14:455–466.

    PubMed  Google Scholar 

  • Uresk, D. W. and T. Yamamoto. 1994. Field study of plant survival as affected by amendments to bentonite soil. Great Basin Naturalist 54:156–161.

    Google Scholar 

  • (USDA, NRCS). United States Department of Agriculture, Natural Resources Conservation Service. Plants Database. http://plants.usda.gov

  • Van Dersal, W. K. 1939. Birds that feed on Russian olive. Auk:483–484.

  • Vandersande, M. W., E. P. Glenn, and J. L. Walworth. 2001. Tolerance of five riparian plants from the lower Colorado River to salinity, drought and inundation. Journal of Arid Environments 49:147–159.

    Article  Google Scholar 

  • Vitousek, P. M. 1994. Beyond global warming: ecology and global change. Ecology 75:1861–1876.

    Article  Google Scholar 

  • Vitousek, P. M., L. R. Walker, L. D. Whiteaker, D. Mueller-Dombois, and P. A. Matson. 1987. Biological invasion byMyrica faya alters ecosystem development in Hawaii. Science 238:802–804.

    Article  PubMed  CAS  Google Scholar 

  • Waring, G. L. and M. Tremble. no date. The impact of exotic plants on faunal diversity along a southwestern river. The Nature Conservancy, Arlington, VA, USA. Contract #B0767000-910524.

  • Warren, D. K. and R. M. Turner. 1975. Saltcedar (Tamarix chinensis) seed production, seedling establishment, and response to inundation. Journal of the Arizona Academy of Science 10:135–144.

    Google Scholar 

  • Warren, S. L. 1990. Growth response of 15 container-grown landscape plants to Uniconazole. Journal of Environmental Horticulture 8:151–153.

    Google Scholar 

  • Weber, W. A. and R. C. Wittman. 1996. Colorado Flora: Eastern Slope. University Press of Colorado, Niwot, CO, USA.

    Google Scholar 

  • Westoby, M., M. Leishman, and J. Lord. 1997. Comparative ecology of seed size and dispersal. p. 143–162.In J. Silvertown, M. Franco, and J. L. Harper (eds.) Plant Life Histories. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Williams, G. P. and M. G. Wolman. 1984. Downstream effects of dams on alluvial rivers. U.S. Geological Survey, Washington, DC, USA. Professional Paper 1286.

    Google Scholar 

  • Williamson, M. 1996. Biological Invasions. Chapman & Hall, New York, NY, USA.

    Google Scholar 

  • Wisconsin State Herbarium. Wisconsin Vascular Plants and Lichens. University of Wisconsin, Madison, WI, USA. http://www.botany.wisc.edu/wisflora

  • Young, J. A. and C. G. Young. 1992. Seeds of Woody Plants in North America. Dioscorides Press, Portland, OR, USA.

    Google Scholar 

  • Zhang, Y. 1981. A preliminary study on the eco-physiological characteristics ofElaeagnus angustifolia L. in Min-Qin region of Gansu Province. Acta Botanica Sinica 23:393–400.

    Google Scholar 

  • Zitzer, S. F. and J. O. Dawson. 1989. Seasonal changes in nodular nitrogenase activity ofAlnus glutinosa andElaeagnus angustifolia Tree Physiology 5:185–194.

    PubMed  Google Scholar 

  • Zitzer, S. F. and J. O. Dawson. 1992. Soll properties and actinorhizal vegetation influence nodulation ofAlnus glutinosa andElaeagnus angustifolia byFrankia. Plant and Soil 140:197–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, G.L., Shafroth, P.B. Biology, ecology and management ofElaeagnus angustifolia L. (Russian olive) in western North America. Wetlands 23, 763–777 (2003). https://doi.org/10.1672/0277-5212(2003)023[0763:BEAMOE]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2003)023[0763:BEAMOE]2.0.CO;2

Key Words

Navigation